InstrumentalVariableRegression#
- class causalpy.pymc_models.InstrumentalVariableRegression[source]#
Custom PyMC model for instrumental linear regression
Example
>>> import causalpy as cp >>> import numpy as np >>> from causalpy.pymc_models import InstrumentalVariableRegression >>> N = 10 >>> e1 = np.random.normal(0, 3, N) >>> e2 = np.random.normal(0, 1, N) >>> Z = np.random.uniform(0, 1, N) >>> ## Ensure the endogeneity of the the treatment variable >>> X = -1 + 4 * Z + e2 + 2 * e1 >>> y = 2 + 3 * X + 3 * e1 >>> t = X.reshape(10, 1) >>> y = y.reshape(10, 1) >>> Z = np.asarray([[1, Z[i]] for i in range(0, 10)]) >>> X = np.asarray([[1, X[i]] for i in range(0, 10)]) >>> COORDS = {"instruments": ["Intercept", "Z"], "covariates": ["Intercept", "X"]} >>> sample_kwargs = { ... "tune": 5, ... "draws": 10, ... "chains": 2, ... "cores": 2, ... "target_accept": 0.95, ... "progressbar": False, ... } >>> iv_reg = InstrumentalVariableRegression(sample_kwargs=sample_kwargs) >>> iv_reg.fit( ... X, ... Z, ... y, ... t, ... COORDS, ... { ... "mus": [[-2, 4], [0.5, 3]], ... "sigmas": [1, 1], ... "eta": 2, ... "lkj_sd": 1, ... }, ... None, ... ) Inference data...
Methods
Register a dimension coordinate with the model.
Vectorized version of
Model.add_coord
.Add a random graph variable to the named variables of the model.
Specify model with treatment regression and focal regression data and priors
InstrumentalVariableRegression.calculate_cumulative_impact
(impact)Check that the logp is defined and finite at the starting point.
Compiled log probability density hessian function.
Compiled log probability density gradient function.
Compiles a PyTensor function.
Compiled log probability density function.
Clone the model.
Create a
TensorVariable
that will be used as the random variable's "value" in log-likelihood graphs.Hessian of the models log-probability w.r.t.
Debug model function at point.
InstrumentalVariableRegression.dlogp
([vars, ...])Gradient of the models log-probability w.r.t.
Evaluate shapes of untransformed AND transformed free variables.
InstrumentalVariableRegression.fit
(X, Z, y, ...)Draw samples from posterior distribution and potentially from the prior and posterior predictive distributions.
Compute the initial point of the model.
InstrumentalVariableRegression.logp
([vars, ...])Elemwise log-probability of the model.
Compile a PyTensor function that computes logp and gradient.
Create a TensorVariable for an observed random variable.
Check if name has prefix and adds if needed.
Check if name has prefix and deletes if needed.
Compute the log probability of point for all random variables in the model.
Predict data given input data X
Compile and profile a PyTensor function which returns
outs
and takes values of model vars as a dict as an argument.Register a data variable with the model.
Register an (un)observed random variable with the model.
Clone and replace random variables in graphs with their value variables.
InstrumentalVariableRegression.sample_predictive_distribution
([...])Function to sample the Multivariate Normal posterior predictive Likelihood term in the IV class.
Score the Bayesian \(R^2\) given inputs
X
and outputsy
.Change the values of a data variable in the model.
InstrumentalVariableRegression.set_dim
(name, ...)Update a mutable dimension.
Set an initial value (strategy) for a random variable.
Produce a graphviz Digraph from a PyMC model.
Attributes
basic_RVs
List of random variables the model is defined in terms of.
continuous_value_vars
All the continuous value variables in the model.
coords
Coordinate values for model dimensions.
datalogp
PyTensor scalar of log-probability of the observed variables and potential terms.
dim_lengths
The symbolic lengths of dimensions in the model.
discrete_value_vars
All the discrete value variables in the model.
isroot
observedlogp
PyTensor scalar of log-probability of the observed variables.
parent
potentiallogp
PyTensor scalar of log-probability of the Potential terms.
prefix
root
unobserved_RVs
List of all random variables, including deterministic ones.
unobserved_value_vars
List of all random variables (including untransformed projections), as well as deterministics used as inputs and outputs of the model's log-likelihood graph.
value_vars
List of unobserved random variables used as inputs to the model's log-likelihood (which excludes deterministics).
varlogp
PyTensor scalar of log-probability of the unobserved random variables (excluding deterministic).
varlogp_nojac
PyTensor scalar of log-probability of the unobserved random variables (excluding deterministic) without jacobian term.
- __init__(sample_kwargs=None)#
- Parameters:
sample_kwargs (
Optional
[Dict
[str
,Any
]]) – A dictionary of kwargs that get unpacked and passed to thepymc.sample()
function. Defaults to an empty dictionary.
- classmethod __new__(*args, **kwargs)#