DifferenceInDifferences#
- class causalpy.experiments.diff_in_diff.DifferenceInDifferences[source]#
A class to analyse data from Difference in Difference settings.
Note
There is no pre/post intervention data distinction for DiD, we fit all the data available.
- Parameters:
Example
>>> import causalpy as cp >>> df = cp.load_data("did") >>> seed = 42 >>> result = cp.DifferenceInDifferences( ... df, ... formula="y ~ 1 + group*post_treatment", ... time_variable_name="t", ... group_variable_name="group", ... model=cp.pymc_models.LinearRegression( ... sample_kwargs={ ... "target_accept": 0.95, ... "random_seed": seed, ... "progressbar": False, ... } ... ), ... )
Methods
DifferenceInDifferences.__init__
(data, ...)DifferenceInDifferences.get_plot_data
(*args, ...)Recover the data of an experiment along with the prediction and causal impact information.
Abstract method for recovering plot data.
Abstract method for recovering plot data.
Validate the input data and model formula for correctness
DifferenceInDifferences.plot
(*args, **kwargs)Plot the model.
Ask the model to print its coefficients.
DifferenceInDifferences.summary
([round_to])Print summary of main results and model coefficients.
Attributes
idata
Return the InferenceData object of the model.
supports_bayes
supports_ols
- classmethod __new__(*args, **kwargs)#