SyntheticControl#
- class causalpy.experiments.synthetic_control.SyntheticControl[source]#
The class for the synthetic control experiment.
- Parameters:
data (
DataFrame
) – A pandas dataframetreatment_time (
Union
[int
,float
,Timestamp
]) – The time when treatment occurred, should be in reference to the data indexcontrol_units (
list
[str
]) – A list of control units to be used in the experimenttreated_units (
list
[str
]) – A list of treated units to be used in the experimentmodel – A PyMC model
Example
>>> import causalpy as cp >>> df = cp.load_data("sc") >>> treatment_time = 70 >>> seed = 42 >>> result = cp.SyntheticControl( ... df, ... treatment_time, ... control_units=["a", "b", "c", "d", "e", "f", "g"], ... treated_units=["actual"], ... model=cp.pymc_models.WeightedSumFitter( ... sample_kwargs={ ... "target_accept": 0.95, ... "random_seed": seed, ... "progressbar": False, ... } ... ), ... )
Methods
SyntheticControl.__init__
(data, ...[, model])SyntheticControl.get_plot_data
(*args, **kwargs)Recover the data of an experiment along with the prediction and causal impact information.
Recover the data of the PrePostFit experiment along with the prediction and causal impact information.
Recover the data of the experiment along with the prediction and causal impact information.
SyntheticControl.input_validation
(data, ...)Validate the input data and model formula for correctness
SyntheticControl.plot
(*args, **kwargs)Plot the model.
SyntheticControl.print_coefficients
([round_to])Ask the model to print its coefficients.
SyntheticControl.summary
([round_to])Print summary of main results and model coefficients.
Attributes
idata
Return the InferenceData object of the model.
supports_bayes
supports_ols
- classmethod __new__(*args, **kwargs)#