Source code for causalpy.experiments.base

#   Copyright 2022 - 2025 The PyMC Labs Developers
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
"""
Base class for quasi experimental designs.
"""

from abc import abstractmethod

import pandas as pd
from sklearn.base import RegressorMixin

from causalpy.pymc_models import PyMCModel
from causalpy.skl_models import create_causalpy_compatible_class


[docs] class BaseExperiment: """Base class for quasi experimental designs.""" supports_bayes: bool supports_ols: bool
[docs] def __init__(self, model=None): # Ensure we've made any provided Scikit Learn model (as identified as being type # RegressorMixin) compatible with CausalPy by appending our custom methods. if isinstance(model, RegressorMixin): model = create_causalpy_compatible_class(model) if model is not None: self.model = model if isinstance(self.model, PyMCModel) and not self.supports_bayes: raise ValueError("Bayesian models not supported.") if isinstance(self.model, RegressorMixin) and not self.supports_ols: raise ValueError("OLS models not supported.") if self.model is None: raise ValueError("model not set or passed.")
@property def idata(self): """Return the InferenceData object of the model. Only relevant for PyMC models.""" return self.model.idata
[docs] def print_coefficients(self, round_to=None): """Ask the model to print its coefficients.""" self.model.print_coefficients(self.labels, round_to)
[docs] def plot(self, *args, **kwargs) -> tuple: """Plot the model. Internally, this function dispatches to either `_bayesian_plot` or `_ols_plot` depending on the model type. """ if isinstance(self.model, PyMCModel): return self._bayesian_plot(*args, **kwargs) elif isinstance(self.model, RegressorMixin): return self._ols_plot(*args, **kwargs) else: raise ValueError("Unsupported model type")
@abstractmethod def _bayesian_plot(self, *args, **kwargs): """Abstract method for plotting the model.""" raise NotImplementedError("_bayesian_plot method not yet implemented") @abstractmethod def _ols_plot(self, *args, **kwargs): """Abstract method for plotting the model.""" raise NotImplementedError("_ols_plot method not yet implemented")
[docs] def get_plot_data(self, *args, **kwargs) -> pd.DataFrame: """Recover the data of an experiment along with the prediction and causal impact information. Internally, this function dispatches to either :func:`get_plot_data_bayesian` or :func:`get_plot_data_ols` depending on the model type. """ if isinstance(self.model, PyMCModel): return self.get_plot_data_bayesian(*args, **kwargs) elif isinstance(self.model, RegressorMixin): return self.get_plot_data_ols(*args, **kwargs) else: raise ValueError("Unsupported model type")
[docs] @abstractmethod def get_plot_data_bayesian(self, *args, **kwargs): """Abstract method for recovering plot data.""" raise NotImplementedError("get_plot_data_bayesian method not yet implemented")
[docs] @abstractmethod def get_plot_data_ols(self, *args, **kwargs): """Abstract method for recovering plot data.""" raise NotImplementedError("get_plot_data_ols method not yet implemented")